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Over the last century, marine mammals have been dramatically reduced in

the world’s oceans. We examined evidence that this change caused dietary

and foraging pattern shifts of the Andean condor (Vultur gryphus) in Patago-

nia. We hypothesized that, after the decrease in marine mammals and the

increase in human use of coastlines, condor diet changed to a more terres-

trial diet, which in turn influenced their foraging patterns. We evaluated

the diet by means of stable isotope analysis (d13C, d15N and d34S) of current

(last decade) and historical (1841–1933) feathers. We further evaluated the

movement patterns of 23 condors using satellite tracking of individuals.

Condors reduced their use of marine-derived prey in recent compared

with historical times from 33+ 13% to less than 8+ 3% respectively; how-

ever, they still breed close to the coast. The average distance between the

coast and nests was 62.5 km, but some nests were located close to the sea

(less than 5 km). Therefore, some birds must travel up to 86 km from nesting

sites, crossing over the mountain range to find food. The worldwide

reduction in marine mammal carcasses, especially whales, may have

major consequences on the foraging ecology of scavengers, as well as on

the flux of marine inputs within terrestrial ecosystems.
1. Introduction
Aquatic and terrestrial ecosystems are frequently linked by resources from out-

side their boundaries and these subsidies can influence ecological processes [1].

Marine nutrients that subsidize terrestrial ecosystems are known to influence

terrestrial food webs [1–3]. Examples include the enhancement of primary pro-

ductivity by nutrient inputs from seabird guano [4,5] or the numerical response

of consumers (e.g. spiders, beetles, lizards, raptors, rodents and carnivores)

mediated by the availability of marine-derived prey [6–10]. Most of these

examples describe changes in food webs at small spatial scales, and are fre-

quently limited to islands and coastal habitats [2,10–12]. However, it is not

well known how changes in the availability of marine subsidies may determine

changes in diet composition, and foraging patterns of consumers.

One particular source of marine subsidies to terrestrial food webs is through

the exploitation of beached marine animal carcasses, which can represent a

massive pulse of nutrients that might induce functional and numerical
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responses of generalist consumers [13]. Scavengers are

adapted to exploiting such clumped food resources [10],

sometimes at great distances from their breeding sites.

Marine subsidies have undoubtedly been an important

source of nutrients to scavengers and were an important

source for the critically endangered California condor (Gym-
nogyps californianus) [14]. However, increases in human

populations and disturbances to coastlines all over the

world, together with the overexploitation of marine fauna,

have reduced the abundance of such marine subsidies [15].

In particular, the massive loss of marine mammals through-

out the world by the nineteenth century [16] clearly marked

a key reduction in availability of marine mammal carcasses

to terrestrial scavengers.

Large soaring avian scavengers have extensive home

ranges in order to subsist on ephemeral and scattered food

sources such as carrion. These large home ranges are main-

tained, in turn, by the capacity of these scavengers to move

efficiently using updrafts [17,18]. The Andean condor

(Vultur gryphus) is the world’s largest avian scavenger and

lives mainly throughout the Andes in South America. This

species has large home ranges that can exceed 50 000 km2

[19], and is an excellent example of a species able to exploit

both terrestrial and marine resources [20]. Condors may

shift their diet in relation to resource availability; in fact, in

recent times they have shifted from native herbivores to intro-

duced domestic and wild ungulates [21]. There are also

multiple records of condors eating from marine sources

along the Pacific coast, from Peru to Tierra del Fuego, includ-

ing whales, sea lions, penguins, pelicans, bird eggs and fish

[22,23] (figure 1). In northwestern Patagonia, condors breed

on both sides of the Andes range (i.e. in Argentina and

Chile) but they seem to feed primarily in the Argentinian

steppe. Thus, condors that breed in Chile typically fly

dozens of kilometres to reach feeding areas [19].

We studied Andean condor space use and diet under the

hypothesis that the current spatial patterns of condors from

the western Andes range in northwestern Patagonia (Chile)

have been influenced by a historical, largely marine-based

diet. We hypothesized that, after the decrease in marine

mammals and the increase in human use of coastlines in

this region, condor diet should have changed to a more ter-

restrial makeup, which in turn influenced their movement

patterns. To test this, we studied condor current and his-

torical diet, and current movement patterns using two

methodological approaches. We first investigated if Andean

condors shifted their diets in relation to the decline of

marine mammals using stable isotope analysis (d13C, d15N

and d34S) of current and historical feathers. These three

complementary isotopes constitute a relatively non-invasive

way of obtaining time-integrated information on assimilated

diets [24–26]. Whereas d13C and d34S values provide infor-

mation on the types of foraging habitats used, d15N values

have been widely used as a proxy for trophic level [27] in

addition to source of feeding. Second, we further evaluated

the movement patterns of modern condors using satellite

tracking of individuals to determine the extent to which

coastal areas are important for their foraging activities.
2. Material and methods
Full details of materials and methods are presented in the

electronic supplementary material, S1.
(a) Study area and study population
We worked in western Patagonia (Argentina and Chile; figure 1).

This area consists of a gradient that encompasses three major bio-

geographic units: the Magellanic coastline, the austral forest and

the steppe (from west to east; figure 1a), including the transition

region between forest and steppe referred to as the forest-steppe

ecotone. The Chilean Pacific coastline has been extensively used

for fishing, whaling and salmon ranching and has experienced a

large human population increase [28–30]. In fact, this area

includes the Pacific Ocean zone where the largest numbers of

whales were caught in the southern Pacific [31]. Ecotone and

steppe areas have been used for extensive livestock ranching

since the last century and are the regions in Argentina with the

greatest amount of alien mammal introductions [21,32]. Condors

in this area feed mainly from carcasses of those abundant alien

domestic and wild herbivores [21].

The Andean condor is considered Nearly Threatened by the

IUCN, included in CITES I, and this is mainly because of a

reduction in their distribution and abundance due to human

impacts [33,34]. The study area hosts one of the most abun-

dant Andean condor populations known (greater than 300

individuals), although it is still a rare species considering their

densities [35]. The western side of the region is dominated by

woodlands with a very low amount of medium-to-large herbi-

vore carcasses available, and thus condors cannot easily forage

there. Moreover, condors forage by sight and hence cannot

easily find carcasses under forest canopy. However, this area

has a large number of cliffs that are used for breeding. Condor

nests are on cliffs with shelves or caves where they lay a single

egg every other year and spend more than a year to fledge the

chick [36].
(b) Condor tagging
All birds were trapped in the same area located near San Carlos

de Bariloche, Argentina (418 090 S; 718 160 W). Condors were

attracted to the traps using sheep carcasses. We tagged them

with satellite transmitters (10 birds with patagial PTT-100 50 g

Solar Argos/GPS tags, Microwave Telemetry Inc., and 13 with

backpack 100 g Solar GPS–GSM CTT-1070-1100 tags, CellTrack

Tech.). Those birds correspond to 13 females and 10 males.

GPS tags were duty cycled to get three dimension locations

every day from dawn to dusk at the maximum interval allowed

by the unit (every 60 min for PTT tags, and every 15 min for CTT

tags; see more details on tagging and movement estimations in

electronic supplementary material, S1).
(c) Stable isotope methods
Historical condor feather samples from Patagonia were

obtained from 24 birds (including both sex and age classes)

retained in museums which were captured between 1841 and

1939 in the south of Argentina and Chile. These historical

feathers came from different locations from condor distribution

but we only included in our analyses those that were collected

inside the home ranges of current sampled condors. Modern

samples (n ¼ 53; 28 adults and 19 immatures [30 females,

17 males], and 6 indeterminate) were obtained from individ-

uals captured between 2010 and 2011 (n ¼ 44, including the

23 tagged birds) in northern Patagonia (Rio Negro province;

418090 S; 718160 W) and from feathers collected between 2010

and 2013 at different condor roosts from southern Patagonia

(Santa Cruz: 478490/508040 S-728090/718550 W; and Tierra del

Fuego provinces 548480 S/688260 W; n ¼ 9; see details on

stable isotopes estimations in electronic supplementary

material, S1).
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Figure 1. (a) Map showing the movement data from the 23 tracked adult Andean condors (13 females and 10 males) collected between October 2010 and February
2017. We include the main biogeographic biomes (forest, steppe and coastline), nest locations, and the international boundary that concur with the top of the
Andes range. (b) Frequency distribution of the total condors GPS locations (n ¼ 159 834). Dark grey bars indicate the GPS data from birds roosting on a cliff or on
the ground. Light grey bars indicate birds flying. Locations of the breeding areas (in longitude) are marked with blue asterisks. The location of the Chilean sea, in the
Pacific Ocean, is highlighted with a red arrow. We represent the schematic silhouette of the Andes range with a violet line and its altitude over the sea level in the
right axis. Note that locations from birds on the ground are concentrated on middle longitudes and they are absent in longitudes corresponding to coastline.
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3. Results
(a) Satellite tracking information
The tagged Andean condors bred in both the Atlantic and

Pacific slopes of the Andean range with some nests very

close to the coast. All of them, however, foraged almost exclu-

sively in the eastern Patagonian steppes (figure 1a). The

distance from the breeding areas to the Pacific coastline was

between 2.9 and 125.9 km (mean 62.5 km, median 57.7 km).

The distance from each nest to the food source in the

Argentine steppe, and the distance to the possible food

source in the coastline were negatively correlated (Pearson

correlation test, r ¼ 20.91, p , 0.05). From the nest site to

the beginning of the foraging area, condors needed to fly

an average of 32 km day21 (range 0 to 86 km, median

33.3 km). Moreover, the maximum distance flown from the

nest to the terrestrial foraging grounds varied from 83.5 km

to 176.0 km (mean 127.6 km), the birds that breed far from

the beginning of the foraging area being the ones in the

Argentinian steppe that tend to fly more (R2 ¼ 0.40, p , 0.01).

All data from birds visiting a possible feeding area (birds

that landed on the ground in areas where carcasses are avail-

able) were located outside the coastline, and most of them

(83%) were in the eastern side of the Andes Mountains

(figure 1b). Based on all condor locations we were able to

discount the possibility that the tagged condors were fre-

quently feeding on the coast because only nine data points

(from 159 834 GPS locations; 0.006%) came from birds

flying over the pacific coastline (400 m wide buffer from the
border of the sea line) and none of the condor locations

were on the ground in order to forage there, but in the eastern

side of the Andes (Argentina) (figure 1).

(b) Stable isotope results
Between historical and modern Andean condors, we only

found significant differences in feather d13C and d34S values

(ANOVA tests; d13C, F1,74 ¼ 52.68, p , 0.0001; d34S, F1,74 ¼

14.28, p , 0.0001; figure 2a and table 1). Dietary estimates

derived from mixing models revealed a change in the dietary

habits of Andean condors between historical and modern

individuals. Although terrestrial resources were the most

important prey assimilated for both periods (mean+ s.d. ¼

91+ 3% and 66+13% for the modern and historical individ-

uals, respectively), the marine resources were clearly more

relevant for the historical samples (33+13%) than for the

modern samples (less than 8+ 3%) (figure 2c).
4. Discussion
Our results show that Andean condors reduced their niche

breadth from historical time (nineteenth century) to the pre-

sent (figure 2). We hypothesize that this fact should be at

least in part due to the reduction of the marine food

resources. Marine mammal carcasses are a huge nutrient

pulse which have been and still are in some cases an impor-

tant source of nutrients for scavengers [10,14], thus

subsidizing terrestrial food webs and enhancing their

http://rspb.royalsocietypublishing.org/
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Figure 2. (a) Three-dimensional mesh plot showing the isotopic space of historical and modern Andean condor samples, and marine/terrestrial resources based on
their d15N, d13C and d34S. Marine and terrestrial resources are corrected for trophic discrimination values and for tissue-related differences. (b) Andean condors
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productivity [1]. Our isotopic mixing models revealed that

marine resources such as whales and sea lions were part of

the diet of the Andean condors from a century ago but are

largely irrelevant today. It is well known that changes in

the distribution and composition of potential food sources

may produce several modifications in the behaviour of consu-

mers [37–39]. Reduction in niche breadth in the last century

has been also observed in a carnivore mammal, the Weddell

seal (Leptonychotes weddellii), associated with the shift in the

marine ecosystem structure [40].

Our conclusions that marine subsidies declined in condor

diet are supported primarily by the d13C and d34S data, two

isotopes that differ between terrestrial and marine resources.

For d13C, a similar isotopic result as that of historical samples

could be expected for a carnivore that fed on herbivores con-

suming large amounts of C4 plants historically (i.e. enriched

in 13C). However, C4 plants are (and were) absent from the

study area, and the first C4 species are located several hun-

dred kilometres away from the main areas visited by

condors [19,41]. We expected d15N values in historical

samples to be higher than modern samples in keeping with

a greater abundance of marine foods but this was not the

case. However, that result can be explained by the possibility

that historical marine inputs were largely from baleen whales

at a comparatively lower trophic level, which have lower

d15N values than other whales [42]. Natural d15N values in

marine isoscapes [43] and in baleen whales in high latitudes

in southern Oceans have a lower d15N compared to the ones

coming from lower latitudes [44]. Taken together, these facts

suggest the change in the proportion of the diet coming from

marine sources as the main explanation for our results.

However, further d15N investigation of terrestrial and

marine dietary items is warranted.
Our historical and recent data on condor diet based on

isotope analyses come from the same area, covering almost

the entire Western Patagonia. Tagged condors covered large

areas of most Patagonia in their daily movements

(figure 1a), and the areas they do not cover in their move-

ments were specifically sampled. Our result on the almost

complete terrestrial condor modern diet evaluated by isotope

analyses agrees with other diet studies in the same area. For

example, diet evaluated by pellets collected between 1992

and 2009 in northwestern Patagonia suggests that currently

at least 98% of condors food is composed by terrestrial mam-

mals [21,45]. Similar results were found in northern condor

distributions in Argentina [46]. Apart from this, condor con-

tour feathers take weeks to grow and we collected feathers

that grew at different times of the year and used the complete

feather to best represent diet. Feathers from historical and

current condors were contours, so if they had any seasonal

pattern of growing this should be at similar times of the

year thus reducing any temporal bias in our comparisons.

Moreover, our GPS data on current condor movements

show condors flying close to or over the coastline, but a com-

plete absence of fixes on the ground at the coastline. This

result also suggests that the birds are not currently using

this area for feeding, and supports the evidence collected

by stable isotopes.

Reductions in marine food subsidies to the terrestrial

system have been accompanied by a non-negligible increase

in human populations and their use of the coastline, which

may have enhanced the deterioration in those areas as suit-

able foraging habitat by condors [15]. In fact, the crowded

coastlines in some areas of Chile have increased the conserva-

tion problems of marine and associated terrestrial wildlife

[28]. Condors tend to avoid landing in human-influenced

http://rspb.royalsocietypublishing.org/


Table 1. Mean (+s.d.) isotopic values of historical and modern Andean condors and their main trophic resources collected in the Patagonian area (isotopic
values corrected; see Material and methods).

species n d15N (‰) d13C (‰) d34S (‰)

Andean condor

historical samples (1841 – 1939) 24 10.08+ 0.82 222.14+ 2.31 7.66+ 2.42

modern samples (2010 – 2011) 53 9.82+ 0.62 224.44+ 0.72 5.48+ 2.13

terrestrial resources

guanaco (Lama guanicoe) 2 6.27+ 0.59 224.74+ 1.44 5.71+ 2.27

horse (Equus ferus) 3 4.01+ 0.55 224.05+ 0.42 8.96+ 1.28

hare (Lepus europaeus) 17 3.31+ 1.01 225.39+ 0.78 4.49+ 3.17

sheep (Ovis aries) 5 5.80+ 0.85 224.93+ 0.27 5.64+ 0.92

cow (Bos taurus) 1 4.06+ 0.67 224.53+ 0.42 7.99+ 1.44

red deer (Cervus elaphus) 5 4.85+ 1.37 225.18+ 0.97 5.32+ 0.71

marine resources

blue whale (Balaenoptera musculus) 3 14.27+ 2.02 216.19+ 1.35 17.71+ 1.98

sea lion (Otaria flavescens) 1 19.8 213.8 16.9
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areas, particularly for feeding purposes [47]. Therefore,

anthropogenic use of coastlines may also have led to the

reduction of the feeding event in the coastlines, as it occurs

in other parts of the Andean condor distribution [23], and

in other species and regions of the world [15].

A non-mutually exclusive alternative explanation for the

change in condor diet would be the increase in the consump-

tion of terrestrial food due to changes in herbivore

abundances in recent times. The huge introduction of dom-

estic livestock and exotic species from the end of 1800 to

the Argentine Patagonia replaced native guanacos (Lama
guanicoe) and choiques (Rhea pennata), among others [21,32].

The large abundance of livestock tends to be associated

with high productivity areas such as Patagonian meadows,

which are preferred by foraging condors [48]. A relatively

stable introduced food source could be attractive for condors

from both sides of the Andes range, and particularly for the

ones that depended on less predictable sources of carcasses

of marine animals. However, livestock in the Argentine

steppe replaced guanacos, which were historically present

in their millions in the same areas and available to condors

[49]. Most importantly, livestock units increased from the

end of 1800 to 1950 but then decreased to similar numbers

of the beginning of the twentieth century, so livestock figures

were relatively similar between historical and recent condors

[50]. Thus, the change in biomass of livestock carcasses might

have not been as important as would be needed to produce

the observed change in the movements of condors.

Regardless, the Andean condor dietary shift we docu-

mented has probably had major consequences for their

spatial ecology. Historically, Andean condors inhabiting

both slopes of the Andes range in Patagonia may have

exploited both terrestrial and marine food sources. However,

changes in the abundance of marine subsidies [31] in the last

century imply that birds breeding in the western side of the

Andes range are now breeding far from their current main

food source, which consists of carcasses of terrestrial animals.

There is no information on the exact location of historical con-

dors breeding areas, and no data on movement of this species
exist from historical times. Nonetheless, as their food sources

changed, their movement patterns should have changed

reflecting the changes in prey locations. Indeed, modern

Andean condors rely almost exclusively on wild and dom-

estic terrestrial herbivores from the Argentine [21,46]

(this study).

Andean condors have not changed most of their historical

distribution in northwestern Patagonia [20,33]. However,

condors breeding closer to the Western coast (Pacific

Ocean) in Chile should have changed their habitat use

because they spend much time in the Argentine steppe, but

not in the Pacific coast. Individual condors are expected to

reduce commuting and foraging time when possible. How-

ever, they now must travel farther (from 45 to 86 km), and

cross over the mountain range, to reach a site with access to

enough terrestrial carcasses. To cross those mountains they

move from a few hundred to more than 3000 m.a.s.l., fly

against strong frontal winds (sometimes more than

100 km h21), and cross the Valdivian temperate rainforest,

which is one of the rainiest areas of the world (almost

4000 mm year21 [51]). Therefore, it could be expected that

today condors nesting on the Pacific side expend more time

and energy (e.g. [52]) than their historical counterparts

and those individuals breeding on the eastern side of the

Andes. In fact, this condor population has a telomere spatial

structure determined by the distance from breeding areas to

the current feeding areas, which may suggest some con-

straints in relation to the distances needed to reach feeding

areas (i.e. the distance to the food source might have physio-

logical consequences, probably in the form of reduced

lifespan or influencing the spatial distribution of the age of

the birds; [53]). The species is threatened and its distribution

has been reduced in several areas [33], but no demographic

data exist for the study area. Thus, implications of higher

distances to food sources and changes in the composition of

the diet may have for this species merits special attention in

future studies.

Our work highlights the significance of marine subsidy

losses to terrestrial systems in a world where marine
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biodiversity is declining and coastlines are becoming increas-

ingly impacted by human use. The reduction of marine

subsides in modern condors can be linked to the massive

loss of marine mammals throughout the world [54]. In the

Southern Hemisphere commercial harvesting reduced several

whale species almost to extinction. Declines of whales by

whaling have been important, especially for the low trophic-

level baleen whales (more than 90% for some species, and a

decrease in biomass available of more than 80%) [55]. Impor-

tantly, during the last century the abundance of those species

was pronounced in the southern Pacific, particularly in our

study area [29,31,56,57] . Our work suggests an effect of the

loss of marine inputs to Andean condors and emphasizes

the need for better understanding of the true ecological signifi-

cance of the marine subsidies to terrestrial systems in general.
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