Nectar and pollen of the invasive century plant *Agave americana* as a food resource for endemic birds

BENEHARO RODRÍGUEZ1*, FELIPE SIVERIO1, MANUEL SIVERIO1, RUBÉN BARONE1 and AIRAM RODRÍGUEZ1,2,3

1Canary Islands’ Ornithology and Natural History Group (GOHNIC), C/La Malecita s/n, 38480 Tenerife, Canary Islands, Spain; 2Department of Evolutionary Ecology, Estación Biológica de Doñana (CSIC), Avenida Américo Vespucio s/n, 41092 Sevilla, Spain; 3Research Department, Phillip Island Nature Parks, P.O. Box 97, 3922 Cowes, Victoria, Australia

Capsule Flowers of an invasive plant species are more visited by native birds than flowers of ornithophilous endemic plants.

Aims To describe the bird guild and its behaviour visiting the century plant *Agave americana* in an insular environment and to determine which factors are affecting visitation rates.

Methods We noted number and species of birds visiting inflorescences on Tenerife, Canary Islands. We used multimodel inference of generalized linear models to analyse the factors affecting the number of visits and the visitor species richness.

Results Eighty-one per cent of inflorescences were visited by eight native bird species. All species fed on nectar and only the Atlantic Canary fed also on pollen. Foraging behaviour varied among species. Visitation rate increased with density and diversity of birds and flower characteristics and decreased through the day. The number of species visiting the inflorescences increased with diversity and density of birds in the surroundings and decreased through the day.

Conclusion The native bird community uses the invasive century plant as a feeding resource at a higher rate than it uses endemic ornithophilous plants. This could have negative effects for the pollination of endemic plants, but positive effects for birds.

The negative impact of introduced species is one of the major causes of biodiversity loss, especially in island ecosystems (Sax & Gaines 2008, Walsh et al. 2012). Despite the growing evidence of the negative impact of biological invasions on wildlife conservation, the underlying mechanisms of these impacts are understudied (Levine et al. 2003). Introduced species can act as competitors or predators of native biota (Blackburn et al. 2004), disrupting local pollination and seed-dispersal plant–animal mutualistic interactions (Traveset & Richardson 2006), and therefore affecting community structure and stability (Pyšek et al. 2012). Potential commensalism with native species by exotic species is frequently overlooked (Reichard et al. 2001, Corlett 2005, French et al. 2005). In fact, facilitative interactions between invasive and native species can occur in a wide range of habitats, have cascading effects across trophic levels, re-structure communities, and lead to evolutionary changes (Rodríguez 2006).

The Canary Islands constitutes one of the hottest spots for biodiversity in the world (Myers et al. 2000), holding a remarkably rich 40% endemic flora (~570 endemic species) (Santos-Guerra 2001). With a dense human population (~280 inhabitants/km²; ISTAC 2012), approximately 20% of the endemic plant species are threatened by multiple human activities including overgrazing by introduced animals, interspecific hybridization with garden plants, habitat lost by urban development or competition with introduced plant species (Francisco-Ortega et al. 2000). Out of 700 introduced plant species recorded in the Canary archipelago (Arechavaleta et al. 2010), 50 species are considered highly invasive (Sanz-Elorza et al. 2005). Although some of these invasive plants are widespread in insular ecosystems (Sanz-Elorza et al. 2005). **The negative impact of introduced species is one of the major causes of biodiversity loss, especially in island ecosystems (Sax & Gaines 2008, Walsh et al. 2012). Despite the growing evidence of the negative impact of biological invasions on wildlife conservation, the underlying mechanisms of these impacts are understudied (Levine et al. 2003). Introduced species can act as competitors or predators of native biota (Blackburn et al. 2004), disrupting local pollination and seed-dispersal plant–animal mutualistic interactions (Traveset & Richardson 2006), and therefore affecting community structure and stability (Pyšek et al. 2012). Potential commensalism with native species by exotic species is frequently overlooked (Reichard et al. 2001, Corlett 2005, French et al. 2005). In fact, facilitative interactions between invasive and native species can occur in a wide range of habitats, have cascading effects across trophic levels, re-structure communities, and lead to evolutionary changes (Rodríguez 2006).**
However, introduced plants can also bring positive effects to the ecosystem by providing feeding resources for native threatened fauna (Schlaepfer et al. 2010). Despite several Canarian endemic plants showing flowers with traits of bird pollination (the so-called ornithophilous syndrome), no specialist nectar-feeding birds live on the archipelago (Valido et al. 2004, Ollerton et al. 2009). Opportunistic birds can visit several native bird-flowers (Valido et al. 2004, Rodríguez-Rodríguez & Valido 2008, 2011, Ortega-Olivencia et al. 2012) as well as other non-native (cultivated or introduced) plants to obtain nectar (Vogel et al. 1984, Trujillo 1992, Martín & Lorenzo 2001, Rodríguez et al. 2014). In Europe a total of 46 bird species have been recorded visiting the flowers of 95 plant species (both exotic and native). Although the ecological importance of bird-flower visitation is still unknown, nectar and pollen seem to be important food resources for tits (Cyanistes) and warblers (Sylvia and Phylloscopus) during winter and spring (da Silva et al. 2014).

The century plant Agave americana is considered invasive in the Mediterranean basin and Macaronesian islands causing diversity impoverishment by competing with the native flora (Badano & Pugnaire 2004). It was introduced from Central America into the Canary Islands probably during the XVI century, and it is now widespread on most of the islands. It produces a large inflorescence and abundant nectar, which attract animals to feed on them. In this study, we investigated the consumption of nectar and pollen of the century plant by native birds to evaluate its current role as competitor or commensal species in the Canarian ecosystems. The main goals of this study were: (i) to describe basic floral traits related to bird pollination of the century plant in the Canary Islands; (ii) to quantitatively describe the bird community feeding on century plant flowers; (iii) to describe the foraging behaviour, including agonistic aggressions, of the visiting birds; (iv) to assess temporal and habitat relationships of the bird visitation pattern; (v) so to discuss the differences in bird community and visitation rates of this introduced plant in relation to other endemic plant species with ornithophilous traits.

METHODS

Study area and species

The Canary Islands lie in the Atlantic Ocean, about 100 km west of north-west African coast. We monitored plants on Tenerife, the largest and the highest island (2034 km² and up to 3718 m a.s.l.). The vegetation and landscape are influenced by north-easterly humid winds, diverse altitude and orientation. Humidity and diversity in vegetation structure increase with north-east orientation and altitude (see Del Arco et al. 2006, for further details).

The century plant was introduced to the Canary Islands for several uses: as an ornamental plant, to obtain pharmacological products or fibres to make ropes or construction materials, as forage for domestic animals or fencing to delimitate property boundaries (Salas & Cáceres 2003). It is a monocarpic perennial plant, requiring around ten years to mature and producing a large panicule inflorescence (up to 9 m height), that has a central stalk with 15–34 composite umbels with yellow flowers in the upper half (Sanz-Elorza et al. 2004). Individual flowers gradually change from a staminate (male) to pistillate (female) state over a 4–6-day period (Slauson 2001). The flowering season in the Canary Islands spreads mainly from July to September depending on local climatic conditions (pers. obs.). Although data regarding the pollination biology of paniculate agaves are limited (e.g. nothing for the Canary Islands introduced populations), they have been assumed to be ‘bat flowers’ (Howell & Roth 1981). However, diurnal and other nocturnal visitors could be more important pollinators than previously thought due to the scarcity of precise studies in many species (Ortiz-Crespo 1974, Slauson 2001). Its seed production and germination percentage are low (Escobar-Guzmán et al. 2008), and it can bud asexually from adventitious shots to form new rosettes (Sanz-Elorza et al. 2004).

At least seven resident bird species from three families (Fam. Sylviidae: Canary Islands Chiffchaff Phylloscopus canariensis, Sardinian Warbler Sylvia melanocephala, Blackcap Sylvia atricapilla and Spectacled Warbler Sylvia conspicillata; Fam. Paridae: African Blue Tit Cyanistes teneriffae; Fam. Fringillidae: Atlantic Canary Serinus canaria and Common Chaffinch Fringilla coelebs) have been mentioned in the literature obtaining nectar from native bird-flower plants (Vogel et al. 1984, Valido et al. 2004, Rodríguez-Rodríguez & Valido 2008, 2011, Ortega-Olivencia et al. 2012). Other species could be potential nectar feeders because...
they consume fruits and plant material, such as, for example, the endemics Bolle’s *Columba bolii* and White-tailed Laurel *Columba junoniae*, Blackbird *Turdus merula*, Common Raven *Corvus corax*, European Robin *Erithacus rubecula* or Spanish Sparrow *Passer hispaniolensis* (Martin & Lorenzo 2001, Rodríguez et al. 2014). Some evidence such as feeding behaviour, pollen traces on the head, and the presence of pollen and sugar remains in droppings of European warblers *Sylvia* spp. suggest that the main target on flowers is nectar rather than pollen (Schwilch et al. 2001, Cecere et al. 2011, da Silva et al. 2014). No evidence for Canarian birds feeding on pollen exists (Valido et al. 2004).

Floral traits and plant characteristics

We examined basic floral traits of 73 century plants distributed along the altitudinal gradient (100–1000 m a.s.l.; Table 1). We also measured inflorescence panicule duration, flower size and sugar concentration. The nectar sugar concentration was measured using a hand refractometer and concentration was expressed as w/w% sucrose equivalents. Each of the monitored plants (where bird observations were made; *n* = 77) and its surroundings were described using 17 variables (see Table 2).

Bird visitation and foraging behaviour

To make observations for the study of bird visitation and foraging behaviour, we selected 77 plants (56 in July–September 2011 and 21 in July–August 2012) with inflorescences at different stages of ripeness, distributed throughout the altitudinal range from 120 to 1100 m and that could be monitored easily (presence of a good vantage point, whenever possible with vegetation cover to hide the observer yet with good visibility). Observations were conducted with binoculars for a two-hour period (154 hours of effective census) from a vantage point situated more than 20 m from the plants. Some plants (*n* = 8) situated in a few sites (laurel forest and pastures) suitable to the localized endemic pigeons or ravens were observed from more than 150 m using a spotting scope. We noted the number and the species of birds visiting the inflorescences during the two-hour period.

As bird community in the area could be influencing visitation rates, a 10 min census of the birds heard or seen was carried out within the two-hour period. Censuses were conducted using a standardized protocol based on a point count at the observation point. We calculated density as birds/10 ha using the formula given in Bibby et al. (2000), the richness as the number of bird species, and diversity using the Shannon Diversity Index (Krebs 1999), taking into account the bird species that visited *A. americana* flowers.

A subsample of focal individuals was used for the study of foraging behaviour. We noted the species, sex (if possible), age (if possible), duration in seconds, number of composite umbels visited, the foraging technique used and if agonistic aggressions occurred. Because we could not identify birds individually (they were not ringed), some birds may have been observed several times. The proportion of repeatedly observed individual birds must be low because: (a) we conducted observations on 55 plants distributed throughout Tenerife; (b) an average of 8.3 birds and 1.8 species were observed per plant; (c) some species were sexed and aged (adult versus juvenile). As foraging techniques are related to the possibility of effective pollination, they were categorized in four different types based on previous studies (Martínez del Rio & Eguiarte 1987). These foraging techniques differed with the place where the birds obtained nectar or pollen from: perched on the flowers; perched on the branches; from the air by hovering in a ‘hummingbird’ fashion; perched upside down in a typical tit style (see Fig. 1). Because of bird behaviour during visits and the structure of inflorescence (height and lack of vegetation shield for birds), we are confident that small insectivorous birds were visiting the flowers to feed on nectar or pollen, although some of them may have picked up small invertebrates occasionally.

Table 1. Quantitative characterization of floral traits of a total of 73 century plants *Agave americana* from Tenerife Island during July–September 2011–2012. Sample size is different because not all variables were recorded in all plants.

<table>
<thead>
<tr>
<th>Flower trait</th>
<th>Mean±sd</th>
<th>Range</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflorescence panicule duration (days)</td>
<td>32±12</td>
<td>16–68</td>
<td>61</td>
</tr>
<tr>
<td>Corolla length (mm)</td>
<td>16.0±1.8</td>
<td>12–21</td>
<td>47</td>
</tr>
<tr>
<td>Corolla wide (mm)</td>
<td>11.1±1.0</td>
<td>9–13</td>
<td>50</td>
</tr>
<tr>
<td>Corolla-stigma distance (mm)</td>
<td>45.4±14.4</td>
<td>20–67</td>
<td>46</td>
</tr>
<tr>
<td>Corolla-anther distance (mm)</td>
<td>57.7±4.9</td>
<td>49–67</td>
<td>42</td>
</tr>
<tr>
<td>Sugar concentration (%)</td>
<td>15.3±1.4</td>
<td>13–17</td>
<td>9</td>
</tr>
</tbody>
</table>
Data analysis

Interspecific differences in foraging behaviour (visit time, number of foraging techniques and number of umbels visited) were tested by Kruskal–Wallis tests. We used multimodel inference of generalized linear models (GLMs) to analyse the factors affecting the number of visits and the visitor species richness (Burnham & Anderson 2002). GLMs were modelled with negative binomial (number of visits) or Poisson (species richness) error distributions, depending on the overdispersion of count data, and log link functions. Prior to the multimodel inference modelling, we checked the collinearity among the 17 potential explanatory variables and, finally, selected 14 variables with variance inflation factors lower than 2.5 (see Table 2, Zuur et al. 2010).

Multimodel inference allowed the identification of the best possible models based on corrected Akaike's information criterion (AICc) and to rank all independent variables according to their influence on the two response variables (Burnham & Anderson 2002). The candidate models in the final selection, i.e. models within two AICc units from the best model, and their Akaike weight of evidence (w) were used to estimate averaged regression coefficients (Bartoň 2013). Thus, the explanatory variables were ranked by importance, i.e. sum of their w over all competing models (the closest to 1, the highest importance).

Models were fitted in R (version 2.15.2; R Core Team 2012) using the glm and glm.nb functions. We used the package MuMIn for some procedures of the multimodel inference method (Bartoň 2013) and variance inflation factors were determined using the function vif of the R-package car (Fox & Weisberg 2011).

RESULTS

Floral traits and plant characteristics

Mean height of the inflorescence panicule of century plant in Tenerife was 7 m ± 1.2 (± sd, range 4.1–9.0, n = 77), and contained 24.2 ± 4.4 umbels (mean ± sd, range 15–34, n = 77). They contained mature flowers...
for 16–68 days, which produce very dilute nectar, i.e. around 15% of sugar concentration (Table 1). On average, forest, shrubs and grass covered 4%, 49% and 6% of land in a 150 m radius from studied plants, respectively.

Visitation rate and bird community

Sixty-three (81.1%) out of the 77 plants were visited at least by one bird species, feeding on nectar and/or pollen. The mean visitation rate of the inflorescences
was 19.0 ± 24.8 (range = 0–195) visits/hour. A total of eight bird species belonging to four families were observed visiting plants (Table 3). All the species, including the Goldcrest Regulus regulus, were feeding on nectar, and only the Canary also on pollen. The most frequent species visiting the plants was the Canary Islands Chiffchaff with 59.2% of the total visits distributed in 61% of the studied plants, followed by the Atlantic Canary (22.7% of visits and 57% of plants) and the African Blue Tit (14.9% of visits and 44% of plants) (Table 3).

Table 3. Number and descriptive parameters of the bird community visiting century plant Agave americana inflorescences on Tenerife during July–September 2011–2012.

<table>
<thead>
<tr>
<th>Family/species/subspecies</th>
<th>Number of visits (%)</th>
<th>Plant visited (%)</th>
<th>Time (sec)/visit Mean±sd (range)</th>
<th>No. of techniques/visit Mean±sd (Max.)</th>
<th>No. of umbels/visit Mean±sd (Max.)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYLVIIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canary Islands Chiffchaff</td>
<td>1729 (59.2)</td>
<td>61.0</td>
<td>18.8 ± 31.2 (1–240)</td>
<td>1.5 ± 0.6 (4)</td>
<td>1.9 ± 1.4 (8)</td>
<td>219</td>
</tr>
<tr>
<td>Blackcap Sylvia atricapilla</td>
<td>46 (1.6)</td>
<td>13.0</td>
<td>27.1 ± 24.3 (6–93)</td>
<td>1.29 ± 0.6 (3)</td>
<td>1.5 ± 0.7 (3)</td>
<td>17</td>
</tr>
<tr>
<td>Sardinian Warbler Sylvia melanocephala</td>
<td>30 (1.0)</td>
<td>11.7</td>
<td>28.1 ± 26.5 (5–122)</td>
<td>1.33 ± 0.5 (2)</td>
<td>2.7 ± 1.8 (8)</td>
<td>21</td>
</tr>
<tr>
<td>Goldcrest Regulus regulus teneriffae</td>
<td>9 (0.3)</td>
<td>1.3</td>
<td>5.5 ± 3.0 (1–10)</td>
<td>1.0 (1)</td>
<td>1.3 ± 0.8 (3)</td>
<td>6</td>
</tr>
<tr>
<td>PARIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African Blue Tit Cyanistes teneriffae teneriffae</td>
<td>436 (14.9)</td>
<td>44.2</td>
<td>23.2 ± 20.9 (1–99)</td>
<td>1.2 ± 0.5 (2)</td>
<td>1.3 ± 0.7 (5)</td>
<td>104</td>
</tr>
<tr>
<td>CORVIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Raven Corvus corax canariensis</td>
<td>3 (0.1)</td>
<td>1.3</td>
<td>167.5 ± 153.4 (59–276)</td>
<td>2.0 ± 0 (2)</td>
<td>1.5 ± 0.7 (2)</td>
<td>2</td>
</tr>
<tr>
<td>FRINGILLIDAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlantic Canary Serinus canaria</td>
<td>668 (22.7)</td>
<td>57.1</td>
<td>47.1 ± 46.9 (2–257)</td>
<td>1.2 ± 0.4 (2)</td>
<td>1.5 ± 0.9 (5)</td>
<td>83</td>
</tr>
<tr>
<td>Common Chaffinch Fringilla coelebs canariensis</td>
<td>1 (< 0.1)</td>
<td>1.3</td>
<td>38</td>
<td>1.0 (1)</td>
<td>1.0 (1)</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2922 (100)</td>
<td>26.1 ± 36.1</td>
<td>1.3 ± 0.6</td>
<td></td>
<td></td>
<td>453</td>
</tr>
</tbody>
</table>

Foraging behaviour

All species were detected feeding on nectar directly from floral receptacles or directly from the surface of the plant (usually some nectar drops were available just outside of the flowers). The only species feeding on pollen was the Atlantic Canary (36% of visits) biting directly off the anthers, especially immature ones (see Fig. 1F).

All species used the foraging technique of perching on a branch for feeding on nectar, and only the Canary Islands Chiffchaff and the Blackcap used the four foraging techniques (Fig. 2). The foraging behaviour of the three most frequent bird species (Canary Islands Chiffchaff, Atlantic Canary and African Blue Tit) differed in the time spent visiting, the number of inflorescences visited and the number of different foraging techniques used per visit (Kruskal–Wallis tests:...
\[\chi^2 = 50.1, \text{df} = 2, P < 0.001; \chi^2 = 12.0, \text{df} = 2, P = 0.003; \chi^2 = 27.3, \text{df} = 2, P < 0.001, \text{respectively; Table 3}. \]

We recorded only 11 agonistic interactions during the 453 monitored visits (African Blue Tit over Canary, \(n = 1 \); Chiffchaff over Chiffchaff, \(n = 2 \); Chiffchaff over Canary, \(n = 1 \); Canary over Canary, \(n = 5 \); Canary over Chiffchaff, \(n = 1 \) and Sardinian Warbler over Sardinian Warbler, \(n = 1 \)).

Bird visitation pattern

The number of visits to inflorescences was positively related to the density and diversity of birds present in the surroundings (Bird_DENSITY and Bird_DIVERSITY), the maturity of the inflorescence (SENESCENT-flowers) and the number of umbels (UMBELS); and negatively related to the time of day (HOUR) and inflorescence height (HEIGHT) (Table 4). The remaining variables had lower importance (Table 4). The number of bird species visiting the inflorescences (richness) increased with the diversity and density of birds in the surroundings (Bird_DIVERSITY and Bird_DENSITY), and decreased with time of day (HOUR), while the remaining variables had lower importance (Table 5).

DISCUSSION

The visitation rate (19.0 ± 24.8 birds per hour) and number of species were considerably higher than those previously recorded for the Canary Islands endemic ornithophilous plants, which never exceed the five visits per hour and five bird species (see Table 6). The fact that the century plants studied were distributed in a great variety of habitats from 120 to 1000 m of height (HEIGHT) (Table 4). The remaining variables had lower importance (Table 4). The number of bird species visiting the inflorescences (richness) increased with the diversity and density of birds in the surroundings (Bird_DIVERSITY and Bird_DENSITY), and decreased with time of day (HOUR), while the remaining variables had lower importance (Table 5).
altitude, in contrast to native species that are usually restricted to one habitat (or at least where studies have been conducted) could explain the differences observed. Nectar composition could also be influencing the observed high visitation rate. One of the defining characteristics of bird pollinated flowers is that they produce copious and dilute nectar (usually 20–25%), and several hypotheses have been proposed to account this phenomenon related to more efficient extraction, to discourage bees or the water requirements of birds (Nicolson et al. 2007, Johnson & Nicolson, 2008, Cecere et al. 2011). In the Canary Islands water availability for birds is in general low, especially in the summer months, when the century plant flowers. Its dilute nectar (∼15%; see Table 1) corresponds to the lowest range for ornithophilous species (Table 6) and could be aimed to meet the water requirements of birds (Nicolson et al. 2007).

Furthermore, inflorescence duration and the amount of resources provided (note that inflorescences can be ripe for more than 30 days; see Table 1) may also explain the high visitation rates. In fact, the number of visits was positively related to the maturity and size of inflorescences (see below).

Like in other native bird-flower plants (Vogel et al. 1984, Valido et al. 2004, Rodríguez-Rodríguez & Valido 2008, 2011; Table 6), the most frequent species using the century plant flowers were the Canary Islands Chiffchaff, the Atlantic Canary and the African Blue Tit. Although it is known that nectar is included in the diet for some of these species (see review in da Silva et al. 2014), the insular syndrome may be also affecting their choice. The low species richness on islands may lead to increased densities of individual species, so intraspecific competition increases, resulting in a wider niche breadth (Olesen & Valido 2004). In fact, the majority of the species in our study show a high density and wide distribution range from the coast to high elevations, occupying a great variety of habitats (Martín & Lorenzo 2001).

Table 6. Visitation rates (visits/hour/plant) and percentage of plants visited (in brackets) by native birds to endemic and exotic plant species on Tenerife and Gran Canaria Islands.

<table>
<thead>
<tr>
<th>Bird species</th>
<th>Isoplexis canariensis</th>
<th>Canarina canariensis</th>
<th>Echium wildpretii</th>
<th>Scrophularia collianthia</th>
<th>Agave americana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylloscopus canariensis</td>
<td>0.6 (84.3)</td>
<td>0.05 (9.0)</td>
<td>0.56 (–)</td>
<td>0.1 (–)</td>
<td>11.23 (61.0)</td>
</tr>
<tr>
<td>Sylvia melanocephala</td>
<td>0.02 (3.4)</td>
<td>–</td>
<td>–</td>
<td>0.01 (–)</td>
<td>0.19 (11.7)</td>
</tr>
<tr>
<td>Sylvia atricapilla</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.30 (13.0)</td>
</tr>
<tr>
<td>Regulus regulus</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.06 (1.3)</td>
</tr>
<tr>
<td>Cyanistes tenerifae</td>
<td>0.04 (4.0)</td>
<td>0.04 (2.0)</td>
<td>–</td>
<td>0.01 (–)</td>
<td>2.83 (44.2)</td>
</tr>
<tr>
<td>Corvus corax</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.02 (1.3)</td>
</tr>
<tr>
<td>Fringilla coelebs</td>
<td><0.01 (0.1)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.01 (1.3)</td>
</tr>
<tr>
<td>Serinus canaria</td>
<td>0.01 (1.8)</td>
<td>–</td>
<td>2.94 (–)</td>
<td>–</td>
<td>4.34 (57.1)</td>
</tr>
</tbody>
</table>

Study details:
- No. of bird visitor species: 5 2 2 2 4 8
- No. of plants: 50 227ᵇ 20 120ᶜ 77
- No. of hours: 725 77.5 7 6–29 9–45ᶜ 13–17
- Nectar sucrose content (%): <3 3 1 2 16 6 29 9–17
- Bloom season: Spring–Summer Winter–Spring Summer Spring Summer
- Island: Tenerife Tenerife Tenerife Gran Canaria Tenerife
- Habitat: Laurel forest Laurel forest Tenerife High mountain shrub Pine wood-thermophilous forest-thermophilous forest-thermophilous forest-laurel forest

ⁿInclude both Sylvia melanocephala and S. atricapilla.
ᵇStudy based on flower observations.
ᶜA. Ortega-Olivencia pers. comm.
The observations of the Goldcrest Regulus regulus and the Common Raven feeding on the century plant nectar were novel, as well as the pollen consumption by the Atlantic Canary, which probably constitutes one of the few cases of a native Palearctic bird feeding on this resource.

All species of goldcrests and kinglets are almost exclusively insectivorous, preying on small arthropods with soft cuticles, such as springtails, aphids and spiders (see review in Del Hoyo et al. 2006). Only occasional records on plant material as food have been reported for some species such as Regulus regulus, Regulus ignicapillus and Regulus calendula (Bardin 1987, Jordano 1987, Del Hoyo et al. 2006). In our study, we observed (and photographed; Fig. 1E) at least two individuals of Goldcrest feeding on nectar in one century plant inflorescence situated in the proximities of a well-developed laurel forest, the typical habitat of the species in the Canaries. These feeding records of nectar of century plant flowers (present study), together with observations made on other cultivated species (pers. obs.), suggest that the Goldcrest could occasionally feed on endemic bird-flowers.

During the last few years, Common Ravens feeding on nectar of the century plant have been observed in the Teno massif, north-west Tenerife (Rodríguez et al. 2014), where the bulk of its threatened population (less than 20 pairs) still survive (Siverio et al. 2010). Canarian population diet has been studied based on pellet analysis, reporting food items with hard structures, e.g. bones, elytra or seeds (Nogales & Hernández 1994). This highlights the importance of using direct observations to study foraging ecology because nectar feeding could pass unnoticed using pellet analysis (Sakai et al. 1986). The low visitation rate observed could be a direct consequence of their low abundance and threatened status on Tenerife (Siverio et al. 2010) or because nectar is not energetically viable as a food source. Thus, the potential role of century plant as a trophic resource deserves more studies and should be taken into account in the management and conservation of this regionally threatened species since availability of other resources, such as carcasses of domestic livestock, have decreased during the last decades (Siverio et al. 2010).

Pollen can contain over 60% of protein depending on the plant species, and usually a large amount of nitrogen. Its relative importance as a source of protein to vertebrates is controversial due to the presence of a strong coat highly resistant to degradation by digestive enzymes (Roulston & Cane 2000, Gartrell & Jones 2001). We observed a high proportion of Canaries feeding on pollen (36%, Fig. 1F) which contrasts with the mostly anecdotal records of birds feeding on pollen in the Western Palearctic (Bardin 1987). Whether the contribution of pollen to the diet of Canaries is significant needs further study.

According to their behaviour and their way of obtaining nectar, the majority of bird species visiting the century plant flowers cannot be considered as true pollinators for it, given that many of them may not transport pollen (Herrera & Pellmyr 2002). The best foraging technique in favour of pollen transport is perching on flowers because bird bellies are usually in direct contact with anthers and stigmas (see Fig. 1). Two species, the Common Raven and Atlantic Canary, are the more likely candidates to be true pollinators, i.e. able to transport pollen grains from anthers to stigmas of the century plant because of their main foraging techniques (Fig. 2). However, only the Atlantic Canary is a common and widespread bird on the island, and so it alone may play an important role in plant reproduction.

According to our models, the visitation rate and number of species visiting inflorescences were related to the density and the diversity of birds in the surroundings of the plants. Thus, a higher number of visits and species visited the inflorescences in areas with higher density and diversity of birds. This reasonable result is even more evident if we consider that birds did not defend the inflorescences (note that only 11 agonistic interactions were observed during 453 monitored visits) as occurs in other bird species visiting flowers of other agave species (see Martínez del Río & Eguiarte 1987). Higher visitation rates and richness during the morning were probably related to patterns of bird activity, but also with the competition with insects that are more active during the midday with higher temperatures. In this sense, introduced honeybees Apis mellifera and other insects compete with native birds for nectar of Canarian endemic plant species, such as Echium wildpretii and Navaca phoenicea (Valido et al. 2002, pers. obs.), or of other species worldwide (e.g. Hansen et al. 2002, Whelan et al. 2009). Other factors such as age and size of the inflorescence regulated the visitation rates. Older (higher SENESCENT), larger (higher UMBELS) and shorter (lower HEIGHT) inflorescences were more frequently attended than younger, smaller and higher ones. This may perhaps be related to experience, visibility and accessibility. Thus it is possible that (1) older inflorescences have had more time to attract
birds than younger ones, because birds learn the location of a long-lasting source of food; (2) larger inflorescences provide a higher amount of nectar and they are more visible and (3) shorter inflorescences permit access in a safer way than higher inflorescences because they are closer in proximity to vegetation cover that might act as a refuge (see Herrera & Pellmyr 2002).

Understanding biological invasions by integrating facilitative interactions has important implications for management, eradication and restoration of invaded ecosystems (Rodríguez 2006). Although further research is needed to evaluate the nutritional significance of nectar to birds (e.g. Martínez del Rio et al. 2001, Brown et al. 2010, Symes et al. 2011), and to understand the avian role in the pollination of the century plant, our study shows a clear case of a facilitative interaction between an invasive plant and native birds. The higher visitation rates of the century plant in comparison with endemic plants suggest that birds may obtain a presumably important feeding resource during the harder conditions of late summer.

ACKNOWLEDGEMENTS

We would like to thanks to M. Nazaret Carrasco, Gustavo Tejera and Coromoto Acevedo for their help during the field work. Aurelio J. Acevedo provided some advice in GIS analysis. Andie Filadoro, Andre Chiaradia, Will Cresswell and two anonymous referees gave us important suggestions and comments, and also improved the English grammar.

FUNDING

This study was partially supported by the Canary Islands' Ornithology and Natural History Group (GOHNIC).

REFERENCES

(MS received 13 October 2014; revised MS accepted 29 January 2015)